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In recent years, surrogatemodels based on deep neural networks have beenwidely used to solve partial differential

equations for fluid flow physics. This kind of model focuses on global interpolation of the training data and thus

requires a large network structure. The process is both time consuming and computationally costly. In the present

study, we develop a neural network with local converging input (NNLCI) for high-fidelity prediction using

unstructured data. The framework uses the local domain of dependence with converging coarse solutions as input,

thereby greatly reducing computational resource and training time. As a validation case, the NNLCI method is

applied to study two-dimensional inviscid supersonic flows in channels with bumps. Different bump geometries and

locations are examined to benchmark the effectiveness and versatility of this new approach. The NNLCImethod can

accurately and efficiently capture the structure and dynamics of the entire flowfield, including regions with shock

discontinuities. For a new bump configuration, the method can perform prediction with only one neural network,

eliminating the need for repeated training of multiple networks for different geometries. A saving of computing wall

time is achieved by several orders of magnitude against the high-fidelity simulation with the same level of accuracy.

The demand on training data is modest, and the training data can be allocated sparsely. These features are especially

advantageous compared with conventional global-to-global deep learning methods and physics-informed methods.

I. Introduction

N UMERICAL solutions of partial differential equations are an
essential aspect of learning physical phenomena in many natural

and engineering science disciplines. The spatio-temporal discretiza-

tion of the underlying governing equations is often computationally
expensive and time-consuming. In recent years, with the rapid devel-

opment of machine learning techniques, researchers have proposed
alternativeways tohandleproblemsmore efficiently. Surrogatemodels

have been developed to improve, or even replace in certain circum-
stances, traditional numerical simulations by mapping between the
problem setting and its solution.
Surrogate models can be broadly classed into three categories:

data-fit models, reduced-order models (ROMs), and hierarchical
(multifidelity) models [1,2]. Data-fit models attempt to approximate
an unknown function from the calculated and measured data. They

are typically constructed through interpolation or regression, using
data points distributed over the entire domain of interest. Examples

include response surface models, kriging, radial basis functions,
neural network, splines, etc. [3–10]. Because of their nature of global

interpolation, the previously mentioned methods often require large
training datasets and may encounter challenges for high-dimensional
problems. Efforts thus have been made to incorporate physical princi-

ples and theoretical formulation in the prediction process to circumvent
this obstacle [11–14].The functional formsof governing equations and

constraints such as boundary conditions are imposed by embedding
penalty terms in the loss function or modifying the neural network

architecture. Examples include the deep Galerkin method, deep Ritz
method, and physics-informed neural network (PINN) [15–19]. The
use of neural operators further improves the model ability to address a

wider range of problems [20–22]. The incorporation of governing

equations reduces the demand for data compared to purely data-driven
approaches. However, the kind of approaches does not provide com-
plexity reduction over conventional numerical schemes. The compu-
tation of the functional forms adds a burden to the training process of
the neural network, which may hinder its application to complicated
nonlinear problems involving discontinuities and especially inter-
actions among such discontinuities.
Reduced-order models (ROMs) are another kind of surrogate

models that can retain the physics and features of the solution
to a given problem, while overcoming the computational challenges
associated with the curse of dimensionality. ROMs construct a
low-dimensional latent space by extracting a representative basis
from the high-dimensional full-order model. They can be further
divided into two types: intrusive and nonintrusive [23–25]. Intru-
sive ROMs require knowledge of the underlying full-order model
such as governing equations or numerical schemes. Examples
include reduced-basis methods, Galerkin projection, and residual
minimization principles [26–31]. Nonintrusive ROMs are purely
data-driven. For example, proper-orthogonal decomposition (POD)
is often used in combination with machine learning tools to con-
struct surrogate models from training datasets. Swischuk et al.
studied the performance of POD-based surrogate models using
different regression approaches for several engineering problems
[32]. Yang and colleagues [33–37] developed POD-based surrogate
models for emulating detailed spatio-temporal evolution of turbu-
lent flows calculated from large-eddy simulations. As a demonstra-
tion study, the flow dynamics in a swirl injector were examined
systematically. To overcome the limitation of linear subspace in
POD, dynamic mode decomposition was developed with the Koop-
man analysis [38,39]. With the advancement of deep learning,
autoencoder-basedROMswere attempted to obtain nonlinearmani-
folds from high-dimensional datasets through an encoder–decoder
structure [40,41].
Hierarchical (multifidelity) models use low-fidelity models to

predict the results of their high-fidelity counterparts, where the
low-fidelity models can be obtained by using coarse grids, lower-
order discretization, or simplified physical assumptions [42]. Various
types of multifidelity approaches have been developed. The scaling
function-based approaches use additive, multiplicative corrections or
the combination of both to properly scale a low-fidelity model to its
high-fidelity counterpart [43–45]. The space mapping approach
attempts to construct conversion functions for the mapping between
these two models by means of the Gaussian process or radial basis
function [46,47]. Cokriging models extend one-variable kriging to a
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multifidelity context by constructing kriging and a covariance matrix
connecting the low- and high-fidelity data [48–50]. Neural networks
are also widely applied to obtain high-fidelity results from limited
sensor information [51] or low-fidelity data [52].
Although the previously mentioned methods have shown promis-

ing results, there exist considerable limitations prohibiting their
application to high-fidelity prediction of complex nonlinear prob-
lems. Most of existing data-driven surrogate models are based on
global computation of the entire field. An effective mapping from a
low-fidelity database or a low-dimensional latent space to its high-
fidelity counterpart needs to be constructed, which requires a large
covariance matrix or neural network structure. Physics-driven mod-
els, such as intrusiveROMs and PINNs, alleviate the issues at the cost
of additional modifications to the solvers or surrogate models. This
leads to extra complexity and burden in the implementation process
and downgrades the performance and robustness of the method. To
address these issues, surrogate models focusing on local features
were explored. Trask et al. developed a convolutional neural network
with a generalized moving-least-square method [53]. Scattered
data inputs are used to construct local regression functions. The
local features and underlying information of the data, however, are
not fully used. Kochkov et al. solved the governing equations by
incorporating neural network learned interpolation coefficients in a
conventional numerical scheme [54]. Although themethod preserves
fine-scale features of the solution, it could develop a growing
deviation toward the coarse-grid simulation as time evolves.
Recently, Huang et al. [55,56] proposed a novel method, known as
neural networks with local converging inputs (NNLCIs), to effi-
ciently solve conservation laws. Themethod predicts high-resolution
solution at a space–time location from two converging, low-fidelity
input solution patches. With the use of local domain of dependence,
the method extracts key local features for accurate prediction, while
at the same time substantially reducing the demand of computational
resource and training data. The NNLCI method has shown great
prediction accuracy and efficiency for solving the Euler equations in
both one dimension [55] and two dimensions [56] as well as Max-
well’s equations [57].
The application of the NNLCI method with structured data is

relatively easy to implement, due to the numerical-grid consistency
and uniformity in the local domain of dependence. Many scientific
and engineering problems, however, involve complex geometries
and unstructured data with irregular grids. Extension of the NNLCI
method to such situations is important. In the presentwork,we extend
the NNLCI method to accommodate unstructured data. As a valida-
tion case, inviscid flow through a converging-diverging channel with
two smooth Gaussian (or triangular) bumps is studied systematically.
The new method is capable of capturing the flow behaviors in the
entire field, including regions with smooth variations and steep
gradients such as shock discontinuities.
This paper is structured as follows. Section II describes the theo-

retical formulation and numerical scheme for inviscid channel flows.
The data generation and preprocessing steps are also discussed.
Section III introduces the neural network framework with local
converging inputs (NNLCI). The method for determining the local
domainof dependence is developed for unstructuredgrids. Section IV
presents the results of the proposed method. The effectiveness of the
new approach is demonstrated by a variety of channel geometries. In
Sec. V, conclusions are reported.

II. Theoretical and Numerical Framework

A. Problem Setup

In this study, we consider a 2D inviscid flow through a channel
with two smooth Gaussian bumps, as shown schematically in Fig. 1.
The computational domain is bounded by x ∈ �−1.5; 1.5� in the axial
direction and y ∈ �0; 0.8� in the vertical direction. Two Gaussian
bumps are placed on the top and bottom walls of the channel. The
lower bump geometry is fixed and defined as

y � 0.0625e−25x
2

(1)

The upper bump is perturbed from the original location and is defined
as

y � 0.08 − 0.0625e−25�x−Δx�2 (2)

where Δx stands for the perturbation from the baseline geometry.
The problem is governed by the 2D Euler equations for compress-

ible flows:

∂ρ
∂t

� ∂�ρu�
∂x

� ∂�ρv�
∂y

� 0 (3)

∂�ρu�
∂t

� ∂�ρu2 � p�
∂x

� ∂�ρuv�
∂y

� 0 (4)

∂�ρv�
∂t

� ∂�ρvu�
∂x

� ∂�ρv2 � p�
∂y

� 0 (5)

∂�ρE�
∂t

� ∂�ρuH�
∂x

� ∂�ρvH�
∂y

� 0 (6)

where ρ; u; v, p andE are the density, x velocity, y velocity, pressure,
and total energy, respectively. H � E� p∕ρ is the total enthalpy.
Calorically perfect gas is assumed. The resulting equation of state
takes the form

p � �γ − 1� ρE −
1

2
ρkvk22 (7)

The ratio of specific heats γ is taken as 1.4. Inviscid wall boundary
conditions are applied at the top and bottom walls. The total temper-
ature Tt;∞ and total pressure pt;∞ of the inflow are

Tt;∞

T∞
� 1� γ − 1

2
M2

∞ (8)

pt;∞

p∞
� Tt;∞

T∞

γ∕�γ−1�
(9)

where the subscript∞ stands for the inflow condition. In the present
study, the inlet Mach number is set atM∞ � 2.0.
A finite-volume solver is implemented for solving the theoretical

formulation by means of the MUSCL scheme [58] along with the
Rusanov flux [59]. An improved second-order Runge–Kutta scheme
with the total-variation-diminishing feature [60] is implemented for
temporal evolution. In the end, a steady state solution can be
obtained.

B. Data Generation and Preprocessing

To generate the training and testing data sets, a variety of bump
locations are considered. The upper bump location is translated in the
x direction with Δx � 0.00;�0.15;�0.3;�0.45 and �0.60 in
Eq. (2). Similarly, for the testing data set, the upper bump location
is randomly perturbed within the range of �−0.60; 0.60� In addition,
the inflow Mach number is perturbed by�5% for the training cases.
This ensures that the training database contains all the features of
highly nonlinear flow behaviors and increases the robustness of the

Fig. 1 Inviscid flow through a channel with two smooth Gaussian
bumps.
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network. Table 1 shows the details of the training and testing
data sets.
For each geometry setting, the flowfield is calculated on unstruc-

tured triangular grids with different resolutions: coarse, finer, and
high resolution. The finer and high-resolutionmeshes are constructed
by implementing uniform mesh adaptation from the coarse grid.
Figures 2 and 3 show the calculated density andMach-number fields,
respectively, for the upper bump translation at Δx � −0.60;−0.30;
0.00; 0.30, and 0.60 The coarse, finer, high, and extra-high-fidelity
simulation results are presented from left to right. The corresponding
numbers of numerical cells are 800, 3200, 51,200 and 204,800,
respectively. The flow structure changes with the translation of the
upper bump. The high-fidelity simulation results exhibit much richer
details in the shock intersection and flow expansion regions. In the
present work, the results with the coarse- and finer-grid resolutions
will be used as the input to the neural network, and the high-fidelity
result as the validation benchmark, because it captures all the impor-
tant flow physics revealed by extra-high-fidelity simulations.
To fully use the low-fidelity information and extract common flow

features from different bump translation cases, preprocessing is
performed on the coarse- and finer-grid data. Figure 4 shows an
example of the data selection process. In each cell of the coarse grids,
several points (red dots) are selected as the training locations. The
data at the corresponding locations in the finer- and high-resolution
grids are extracted to form the input-image pairs for the training
dataset. Approximately 10,000 points are used in each training case.
This avoids computationally expensive interpolation of a large data-
set and accelerates the training process.

For each data point, all four state variables u � �ρ; ρu; ρv; ρE� are
used. Normalization and standardization are implemented to facili-
tate the training of the neural network. In the present study, the data
are rescaled by the difference between the maximum and minimum
values:

~u � u −min�u�
max�u� −min�u� (10)

The tanh function is used as the activation function in the neural
network:

f�x� � ex − e−x

ex � e−x
(11)

III. Neural Network with Local Converging Inputs

In this section, the neural network with local converging inputs
(NNLCI) for unstructured data is constructed. Figure 5 provides an
overview of the standard NNLCI solution procedure. First, we obtain
the solutions from the simulations on the coarse and finer grids. The
local domain of dependence is then determined for each data location
�i; j� denoted by the red dot. A 3 × 3 patch �i − 1; i� 1� × �j − 1;
j� 1� is formed around the desired location (red point). The intention
is to filter the data at a proper scale to include all the local features
for accurate prediction, while discarding far-end information for
low training costs. Then, a neural network is used to map the
solutions of the two low-fidelity patches to their high-fidelity
counterpart at the center location �i; j�. The process is repeated
across the whole domain to achieve high-fidelity prediction for the
entire field.
The previously mentioned procedure is straightforward on struc-

tured grid; however, it becomes nontrivial when applied to unstruc-
tured grid. To address the issue, we construct similar patches around
the desired location based on the local cell size of the unstructured
grid. Figure 6 gives two examples of such a process. We form a

Table 1 Training and testing cases: inflow Mach numberM∞
perturbed by�5% > for each bump location

Dataset Description M∞ perturbation

Training Δx � 0.00;�0.15;�0.30;�0.45,�0.6 ΔM∞ � 0;�5%

Testing Δx � −0.350;−0.225; 0.120; 0.525 None

Fig. 2 Calculated density fields with different resolutions for cases Δx � −0.6;−0.3; 0.0; 0.3, and 0.6.M∞ � 2.0.
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Fig. 3 Calculated Mach-number fields with different resolutions for cases Δx � −0.6; − 0.3; 0.0; 0.3, and 0.6.M∞ � 2.0.

Fig. 4 Example of unstructuredNNLCI trainingdataset.The coarse- and finer-resolutiondata are used as the inputs to the neural network, and the high-
resolution data is used for training.

Fig. 5 Overview of the standardNNLCI structure. Fourmajor steps are involved:multifidelity simulation, local domain of dependence, neural network
regression, and high-fidelity prediction.
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5 × 5 rectangular stencil in �x − 2hcoarse; x� 2hcoarse� × �y − 2hcoarse;
y� 2hcoarse� around the selected location (red dots) based on the
coarse grid [where hcoarse is the local cell size of the coarse grid
around �x; y�] as the local domain of dependence (local stencil),
shown by green dots. The size of the local domain of dependence
varies with the local cell size. Some of the data points near the
boundaries are discarded in this process, because the selected stencil
points are out of bound.
To determine the local cell size, the information of the current and

adjacent cells needs to be extracted. For each selected location on a
given grid, the corresponding cells E (blue lines) can be found
efficiently by adopting a hierarchical data structure described in
Ref. [61]. The computational domain is divided into a binary tree
of blocks of cells based on the cell centroid locations. By comparing
the data location �x; y� with the cell centroid, one can descend from
the root to subblocks and find the cell E containing it. This greatly
reduces the computational cost and search time. The adjacent cells
Eadj that share edges or vertices with E are identified based on the

connectivity information, and the local cell size can be calculated.
Here, the local cell size hE of a triangular cell E is defined as the
average cell size of itself and its adjacent cells:

hE � 1

N
k∈Eadj

Ak (12)

where Ak is the area of cell k, Eadj represents the cells adjacent to cell

E, and N is the total number of Ak in the summation.
Once a stencil is determined, the values of state variables at the

5 × 5 locations determined through interpolation from the coarse and
finer meshes are used as the input to the neural network. Also
included in the input are hcoarse and hfiner, the local cell size at
�x; y� for the coarse and finer meshes. These two values are critical
for the neural network to approximate nonuniform properties, given
the states interpolated from the coarse and finermeshes. The output is
the predicted state variables at �x; y�. The procedure for determining
the statevariables follows. Letxs � �xs; ys� be one of the 5 × 5 points
in a particular stencil. We first locate the corresponding cell E0 that
contains this point using the hierarchical approach described previ-
ously. The center of cell E0 is denoted as x0 � �x0; y0�, and the
corresponding state variable is u0. Then, the three adjacent triangles
E1, E2, and E3 are located, with the cell centers �xi; yi� and state
variables, ui, where i � 1; 2, and 3. The state at the stencil point
location �xs; ys� can be interpolated with a linear polynomial:

u�xs − x0� � a0 � a1�xs − x0� � a2�ys − y0� (13)

It is easily seen that a0 � u0. To solve for the coefficients a1 and a2,
three combinations of cells can be used: �E0; E1; E2�; �E0; E2; E3�,
and �E0; E1; E3�. Each set of cells, say set k, will determine a set of
candidatevalues fora1 anda2, saya1k

anda2k
. Theminmod function

is then applied to determine the best coefficient values:

a1 � minmod�a1k
; k � 1; 2; 3� (14)

a2 � minmod�a2k
; k � 1; 2; 3� (15)

where theminmod function is acting componentwisely and is defined

as

minmod�a1; a2; : : : ; an� �
min�a1; a2; : : : ; an�; if all ai > 0

max�a1; a2; : : : ; an�; if all ai < 0

0; otherwise

(16)

The procedure is repeated on the coarse, finer, and high-fidelity

solutions to generate the input and reference values for the neural

network. The local cell sizes are used as inputs to the neural network

to include the local mesh size information, which gives us an input

size of 202, including the four state variables at the 5 × 5 locations

and the two local cell sizes. The output size is 4. The input–output pair

is shown in Fig. 7.
Table 2 lists the hyperparameters of the selected neural network,

determined frommanual search, in the present study.A network of 10

hidden layers of 600 nodes is designed to learn the mapping from

low-fidelity solutions in a local domain to the high-fidelity solution at

a point. The network is trained using the Adam optimizer with a

learning rate of 1×10−4 with 1×10−8 regularization. The tanh func-

tion is used as the activation function. The relativemean squared error

(RMSE) is selected as the loss function to measure the difference

between the NNLCI prediction and the benchmark high-fidelity data:

L � k k ~uk − ukk22
k kukk22

(17)

Fig. 6 Examples of 5 × 5 points for NNLCI local domain of dependence.
Reddots: selected locations; greendots: local domainof dependence; blue
lines: corresponding cells.

Fig. 7 Input–output pair of unstructured NNLCI. The input contains
the state variables on 5 × 5 stencil points and the localmesh sizes of coarse
and finer grids. The output is the state variable value at the cell center.

Table 2 Hyperparameters of the
neural networkwith local converging input

Hyperparameters

Number of epochs 50000
Number of hidden layers 10
Network structure �202; 10 × 600; 4�
Learning rate 1 × 10−4

L2 regularization 1 × 10−8

Activation function tanh
Optimizer Adam
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where ~uk represents the predicted results from the NNLCI method
and uk the data from high-fidelity simulation. For unstructured data,
the RMSE needs to be weighted by the cell area. The cell-weighted
RMSE is given by

L � k Akk ~uk − ukk22
k Akkukk22

(18)

IV. Results and Discussion

The NNLCI method is applied to predict the flowfields with
several different bump geometries on unstructured grids. The coarse
and finer solutions of each case are used as the inputs to the neural
network. Unlike in the training cases, we select the cell centroids of
the high-resolution grids as the prediction locations to enhance the
resolution of final prediction results. Figure 8 shows an example of
the input-image pairs. The red dots denote the selected locations for
prediction. For each case, nearly 50,000 points are selected for
prediction. The interpolation technique described in Sec. III is imple-
mented to obtain the data for these locations on both the coarse and
finer grids.
First, we present the NNLCI prediction for bump translation cases,

as listed in Table 1. Figure 9 shows the NNLCI predicted Mach-
number fields for the upper bump translations of Δx � −0.35;
−0.225; 0.12, and 0.525 High-fidelity simulation results are also
presented for comparison. The flowfields exhibit distinct behaviors
and features, depending on the bump translation. In the case ofΔx �
−0.35 the upper shock develops upstream and intersects with the
lower shock near the lower bump. Consequently, the flow expansion
area is shifted toward the lower wall. The secondary shock is well-
developed downstream of the upper bump, whereas it can hardly be
observed near the lower bump. The case ofΔx � 0.525 has opposite
behavior. In the cases ofΔx � 0.12 and−0.225, a secondary shock is
observed originating from both the upper and lower bumps, with
shock intersection near the center of the channel. Despite such
complex flow features, the NNLCI method achieves promising
results. It accurately captures the primary shock location and struc-
ture for all cases. The expansion region and secondary shock are also
well-reconstructed.
Table 3 summarizes the prediction errors of the four cases. Here,

the area-weighted relative L1 norm, L1,

L1 � k Akk ~uk − ukk1
k Akkukk1

(19)

and the area-weighted relative root-mean-square error (RRMSE), L

L � k Akk ~uk − ukk22
k Akkukk22

(20)

are used to measure the performance of the NNLCI prediction. The
relative L1 error of the low-fidelity simulation is also included for

comparison.
The NNLCImethod achieves a relativeL1 error of less than 1%, in

comparison with the low-fidelity simulation error of 7.2%. The
prediction accuracy is improved by about 10 times. In particular,
the resolution in regions with shock discontinuities is substantially

improved (see Figs. 2 and 3). Figure 10 shows the Mach-number
distribution along the centerline of the channel, y � 0.4. The NNLCI
prediction (red line) agrees well with the high-fidelity simulation

result (51,200 cells, green line). The lower-fidelity simulation result
(3200 cells, blue line) used as the input in the NNLCI method is also
presented for reference. The flow development and shock structure

are accurately captured by theNNLCI prediction for all the test cases.
These results testify to the effectiveness of the NNLCI method for
predicting complex flows, including regions with smooth evolution
and shock discontinuities.
The NNLCI method allows for simultaneous predictions of all the

state variables. Figures 11 and 12 show the results of the density and

Fig. 8 NNLCI prediction on unstructured grids. Data at prediction locations are interpolated on both coarse and finer grids.

Fig. 9 Mach-number fields of NNLCI prediction (left) and high-fidelity
simulation (right). Upper bump translations are Δx � −0.35, −0.225,
0.12, and 0.525, respectively.
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pressure fields, respectively. The NNLCI method accurately predicts
the structure and magnitude of the entire field, including both
shock discontinuities and smooth regions. It is worth noting that
the pressure and density predictions achieve better accuracy than
their Mach-number counterpart. The latter is a derived variable, and

its calculation involves manipulations of primary variables, which
easily accumulates errors. For a new bump configuration, the NNLCI
method can perform prediction with only one neural network and
thus eliminates repeated training of multiple networks for different
geometric variables. In the present study, the wall time for low- and
high-fidelity simulation of each design setting takes 1 min and 2 h
respectively, on a single CPU (Intel Core i7-10750H). In comparison,
the NNLCI predicts a new case in less than 1 s on the same hardware.
A time saving of more than two orders of magnitude is achieved
between the NNLCI prediction and high-fidelity simulation.
In general, theNNLCImethodworks like a local scanner that scans

two coarse-grid numerical solutions (with onemore accurate than the
other) at a given location and then predicts the high-fidelity solution
at the scanned location. Compared to other neural network methods
that map global information onto high-fidelity solution, the localness
of NNLCI is fundamental to its efficiency and leads to many distinct
features. For example, the high-fidelity solution to be predicted could
be quite different from the high-fidelity solutions used in training.
This issue, however, can be properly handled by the NNLCI method,
in which the similarity of local patches of the solution in the input is
much greater than that among the global solution. It is thus possible to
use considerably fewer high-fidelity solutions for training and allo-
cate these high-fidelity solutions more sparsely (thereby allowing for
a larger domain of interest). In fact, NNLCI’s demand for training
data is modest because each high-fidelity solution used in training
provides a vast number of local samples for training, and a small
number of high-fidelity solutions are usually adequate for training.
The local input patches taken from a converging sequence of numeri-
cal solutions provide information sufficient for the neural network to
accurately capture the local flow features, whether or not in regions of
smooth evolution or steep gradients.
It remains a challenge for those neural network methods that are

based onminimization of the residue of the governing equations (e.g.,
[15–19]) to predict solutions containing discontinuities or steep
variations. The situation is further exacerbated for problems involv-
ing interactions of discontinuities. Moreover, these methods do not
provide complexity reduction over conventional numerical schemes.

Table 3 Relative L1 norm and relative root-mean-square
error of NNLCI predictions

Bump
translation Δx

NNLCI relative
L1 norm

NNLCI
RRMSE

Low-fidelity
relative L1 norm

−0.35 0.734% 1.124% 7.538%
−0.225 0.979% 1.597% 7.742%
0.12 0.818% 1.492% 7.137%
0.525 0.654% 1.149% 6.347%
Total 0.797% 1.358% 7.211%

Fig. 10 Mach-number distribution along the centerline of the channel
y � 0.4.

Fig. 11 Density fields: NNLCI prediction (left) and high-fidelity simu-
lation (right). Upper bump translations are Δx � −0.35, −0.225, 0.12,
and 0.525, respectively.

Fig. 12 Pressure fields: NNLCI prediction (left) and high-fidelity sim-
ulation (right). Upper bump translations are Δx � −0.35, −0.225, 0.12,
and 0.525, respectively.
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Because the NNLCI method only requires the neural network to map
local patches of coarse solutions onto the high-fidelity solution at a
local point, the computational burden on the neural network is
modest. A relatively small and standard neural network is often
adequate. Also, due to its localness, the NNLCImethod is convenient

to implement in complicated computational domains for real appli-
cations. The training can be achieved in a set of varying computa-
tional domains, and the prediction can be performed in different
domains. This capability is most suitable for design optimization,
which requires the survey of a large parameter space.
To further evaluate the performance of the NNLCI method, two

different bump geometries, a triangular bump and a Gaussian bump
with changing variance, as shown in Fig. 13, are investigated. The
shape of the Gaussian bump is varied by tuning the variance λ in the
shape function, whereas the height remains fixed:

y � 0.0625e−λx
2

(21)

For the triangular wedge, the wedge height h is fixed as 0.1, whereas
the length L varies in the range of [0.4, 0.6].
Figures 14 and 15 show the calculated density and Mach-number

fields for the two different types of bump shapes with different
resolutions. The geometric parameters λ or L dictate the incident
flow angle at the bump leading edge, resulting in different flow
structures and shock dynamics. As the wedge angle increases, the
primary oblique shock angle becomes larger, and the postshock
subsonic region is compressed, resulting in a weaker secondary
shock due to limited expansion. Such change of flow behavior greatly
increases the difficulty of prediction. In the present study, instead of
constructing a separate neural network, the already trained network is
further improved with supplementary data. The resultant NNLCI is
expected to predict the flowfield for all bump geometries with high
fidelity. Table 4 summarizes the training and validation cases. For
each bump shape, the free-stream Mach numberM∞ is perturbed by
�5%. For the validation cases of both bump shapes, the validation

Fig. 13 Gaussian and triangular bumps with different geometric
parameters λ and L.

Fig. 14 Calculated density fields with different resolutions for Gaussian bumps with λ � 10; 25, and 40, respectively, and triangular bumps with
L � 0.4, 0.5, and 0.6, respectively.M∞ � 2.0.
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points within (λ � 17.5, L � 0.55) and outside of (λ � 45,
L � 0.65) the training range are tested to demonstrate the generali-
zation capability of the NNLCI method.
Figure 16 shows the Mach-number fields obtained from the

NNLCI predictions and high-resolution simulations. The NNLCI
method accurately predicts the flow behaviors for all cases, including
those outside of the training range.
Table 5 summarizes the NNLCI prediction errors. An accuracy of

more than 99% is achieved. As noted previously, only one neural
network is built and trained for all the cases. This eliminates the need
for construction and training of new neural networks for different
geometries. When predicting a new case, the existing neural network
can be trained with additional data and obtain accurate results in a
short time. The NNCLI approach significantly reduces the turn-
around time for a new case. With extra training cases for new bump
shapes, the NNLCI method can further improve the prediction accu-
racy. Overall, an order-of-magnitude improvement of accuracy is
obtained against low-fidelity simulation results.

Fig. 15 CalculatedMach-number fields with different resolution for Gaussian bumps with λ � 10; 25, and 40, respectively, and triangular bumps with
L � 0.4, 0.5, and 0.6, respectively.M∞ � 2.0.

Table 4 Training and validation cases for Gaussian and
triangular bumps

Dataset Bump type Parameters M∞ perturbation

Training Gaussian λ � 10; 25; 40 ΔM∞ � 0;�5%

triangular L � 0.4; 0.5, 0.6

Validation Gaussian λ � 17.5, 45 None

triangular L � 0.55, 0.65

Fig. 16 Mach-number fields calculated by theNNLCImethod (left) and
high-fidelity simulation (right) for Gaussian bumps with λ � 17.5 and 45
and triangular bumps with L � 0.55 and 0.65.
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Figure 17 shows the distributions ofMach number along the center

of the channel for the Gaussian and triangular bumps. The NNLCI

method accurately predicts the shock location and amplitude, despite

the disparity of flow behaviors between the two cases. Figures 18 and

19 show the calculated density and pressure fields, respectively.

Good agreement is achieved between the NNLCI predictions and

high-fidelity simulations.

V. Conclusion

This paper presents a NNLCI for predicting fluid flow dynamics
with unstructured data. The work provides an effective means for
treating problems with complex physics and geometries. The
approach employs an effective sampling-and-interpolation technique
to construct local converging input from low-resolution simulation
results. The neural network builds up the regression from local
converging inputs to high-fidelity prediction results. As part of the
validation effort, the NNLCI method for unstructured data is applied
to predict two-dimensional supersonic inviscid flows in a channel
with two different types of bumpson thewalls. The bumpgeometry is
varied to create distinct flow structures and shock dynamics. Excel-
lent agreement between the NNLCI predictions and high-fidelity
simulations is achieved. TheNNLCImethod allows for simultaneous
predictions of all the flow variables and their gradients over the entire
flowfield, including regions with shock discontinuities. Furthermore,
the NNLCI method can effectively treat different bump geometries
with only one neural network. It can learn flow features directly from
the training data and produce accurate predictions for new geom-
etries. The demand on training data is modest, and the training data
can be allocated sparsely. In the present demonstration case, compu-
tational time efficiency is improved by two orders of magnitude
compared to high-fidelity simulations at the same level of accuracy.
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